Quantifying Volatility Reduction in German Day-ahead Spot Market in the Period 2006 through 2016
نویسندگان
چکیده
In Europe, Germany is taking the lead in the switch from the conventional to renewable energy. This poses new challenges as wind and solar energy are fundamentally intermittent, weather-dependent and less predictable. It is therefore of considerable interest to investigate the evolution of price volatility in this post-transition era. There are a number of reasons, however, that makes the practical studies difficult. For instance, EPEX prices can be zero or negative. Consequently, the standard approach in financial time series analysis to switch to logarithmic measures is inapplicable. Furthermore, in contrast to the stock market prices which are only available for trading days, EPEX prices cover the whole year, including weekends and holidays. Accordingly, there is a lot of underlying variability in the data which has nothing to do with volatility, but simply reflects diurnal activity patterns. An important distinction of the present work is the application of matrix decomposition techniques, namely the singular value decomposition (SVD), for defining an alternative notion of volatility. This approach is systematically more robust toward outliers and also the diurnal patterns. Our observations show that the day-ahead market is becoming less volatile in recent years. Keywords—Day-ahead price, Electricity market, Energy switch, Singular value decomposition, Time-series analysis, Renewable energy sources.
منابع مشابه
A New Real-Time Pricing Scheme Considering Smart Building Energy Management System
Real-time pricing schemes make the customers to feel the energy price volatility and improve their load profiles. However, these schemes have no significant effect on demand-side uncertainty reduction. In this paper, considering smart grid infrastructures and smart building Energy Management System (EMS), a new real-time pricing scheme is presented to reduce the uncertainty of demand-side. In t...
متن کاملA New Iterative Neural Based Method to Spot Price Forecasting
Electricity price predictions have become a major discussion on competitive market under deregulated power system. But, the exclusive characteristics of electricity price such as non-linearity, non-stationary and time-varying volatility structure present several challenges for this task. In this paper, a new forecast strategy based on the iterative neural network is proposed for Day-ahead price...
متن کاملHow Does Pricing of Day-ahead Electricity Market Affect Put Option Pricing?
In this paper, impacts of day-ahead market pricing on behavior of producers and consumers in option and day-ahead markets and on option pricing are studied. To this end, two comprehensive equilibrium models for joint put option and day-ahead markets under pay-as-bid and uniform pricing in day-ahead market are presented, respectively. Interaction between put option and day-ahead markets, uncerta...
متن کاملAnalysis the Impact of Tax on Transfer of Real Estate and Housing on the Reduction of Housing Market Volatility in Urban Areas of Iran
Land and urban housing have been affected by speculative demands due to heterogeneity, immobility and profitability, and have led to an increase of land and housing prices. The government, with the aim of controlling the housing market volatility, can play an important role in preventing the diversion of capital from the real sector to the housing sector and its multiple shocks. In this researc...
متن کاملExchange rate volatility and its effect on stock market volatility
This paper investigates empirically the effect of volatility of the exchange rate of the U.S. dollar vis-à-vis the euro on U.S. stock market volatility while controlling for a number of drivers of stock return volatility. Using a GARCH(1, 1) model and using weekly data covering the period from the week of January 1, 1999 through the week of January 25, 2010, it is found that the 9/11 terrorist ...
متن کامل